69 research outputs found

    Two adjacent nuclear factor-binding domains activate expression from the human PRNP promoter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transmissible spongiform encephalopathies (TSEs) comprise a group of fatal degenerative neurological diseases in humans and other mammals. After infection, the cellular prion protein isoform PrP<sup>C </sup>is converted to the pathological PrP<sup>SC </sup>scrapie isoform. The continued conversion of PrP<sup>C </sup>to PrP<sup>SC </sup>requires <it>de novo </it>endogenous PrP synthesis for disease progression. The human prion protein gene (<it>PRNP</it>) promoter was therefore investigated to identify regulatory elements that could serve as targets for therapeutic intervention.</p> <p>Findings</p> <p>The human prion protein gene (<it>PRNP</it>) promoter from position -1593 to +134 relative to the putative transcriptional start site (+1) was analyzed by transient transfection in HeLa cells. Deletions from the 5' end between positions -1593 and -232 yielded little change in activity. A further 5' deletion at position -90 resulted in a decline in activity to a level of about 30% of the full-length value. DNase I footprinting of the region between positions -259 and +2 identified two adjacent protected domains designated as prpA (-116 to -143) and prpB (-147 to -186). Internal deletions combined with mobility shift electrophoresis and methylation interference assays indicated the presence of sequence specific nuclear factor complexes that bind to the prpA and prpB domains and activate expression from the human <it>PRNP </it>promoter in an additive fashion.</p> <p>Conclusion</p> <p>Results from transient transfection, DNase I footprinting, mobility shift electrophoresis, and methylation interference experiments suggest that two DNase I protected domains designated as prpA and prpB are binding sites for as yet unidentified regulatory factors that independently activate expression from the <it>PRNP </it>promoter.</p

    Regulation of the apoptotic genes in breast cancer cells by the transcription factor CTCF

    Get PDF
    CTCF is a highly conserved and ubiquitous transcription factor with versatile functions. We previously demonstrated that elevated protein levels of CTCF in breast cancer cells were associated with the specific anti-apoptotic function of CTCF. We used proteomics and microarray approaches to identify regulatory targets of CTCF specific for breast cancer cells. Among the CTCF identified targets were proteins involved in the control of apoptosis. A proapoptotic protein, Bax, negatively regulated by CTCF, was chosen for further investigation. Repression of the human Bax gene at the transcriptional level by CTCF in breast cancer cells was confirmed by real-time PCR. Two CTCF binding sites within the Bax promoter were identified by electrophoretic mobility shift assay and footprinting. In reporter assays, the Bax-luciferase reporter construct, containing CTCF-binding sites, was negatively regulated by CTCF. In vivo, CTCF occupied its binding sites in breast cancer cells and tissues, as confirmed by chromatin immunoprecipitation assay. Our findings suggest a possible mechanism of the specific CTCF anti-apoptotic function in breast cancer cells whereby CTCF is bound to the Bax promoter, resulting in repression of Bax and inhibition of apoptosis; depletion of CTCF leads to activation of Bax and apoptotic death. CTCF binding sites in the Bax promoter are unmethylated in all cells and tissues inspected. Therefore, specific CTCF interaction with the Bax promoter in breast cancer cells, and the functional outcome, may depend on a combination of epigenetic factors characteristic for these cells. Interestingly, CTCF appears to be a negative regulator of other proapoptotic genes (for example, Fas, Apaf-1, TP531NP1). Conversely, stimulating effects of CTCF on the anti-apoptotic genes (Bcl-2, Bag-3) have been observed. Taken together, these findings suggest that specific mechanisms have evolved in breast cancer cells to protect them from apoptosis; regulation of apoptotic genes by CTCF appears to be one of the resistance strategies

    The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer

    Get PDF
    BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation

    BORIS/CTCFL-mediated transcriptional regulation of the hTERT telomerase gene in testicular and ovarian tumor cells

    Get PDF
    Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesis

    Unauthorized Horizontal Spread in the Laboratory Environment: The Tactics of Lula, a Temperate Lambdoid Bacteriophage of Escherichia coli

    Get PDF
    We investigated the characteristics of a lambdoid prophage, nicknamed Lula, contaminating E. coli strains from several sources, that allowed it to spread horizontally in the laboratory environment. We found that new Lula infections are inconspicuous; at the same time, Lula lysogens carry unusually high titers of the phage in their cultures, making them extremely infectious. In addition, Lula prophage interferes with P1 phage development and induces its own lytic development in response to P1 infection, turning P1 transduction into an efficient vehicle of Lula spread. Thus, using Lula prophage as a model, we reveal the following principles of survival and reproduction in the laboratory environment: 1) stealth (via laboratory material commensality), 2) stability (via resistance to specific protocols), 3) infectivity (via covert yet aggressive productivity and laboratory protocol hitchhiking). Lula, which turned out to be identical to bacteriophage phi80, also provides an insight into a surprising persistence of T1-like contamination in BAC libraries

    Context Differences Reveal Insulator and Activator Functions of a Su(Hw) Binding Region

    Get PDF
    Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements

    Coordinated Activation of Candidate Proto-Oncogenes and Cancer Testes Antigens via Promoter Demethylation in Head and Neck Cancer and Lung Cancer

    Get PDF
    Background: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. Methodology/Principal Findings: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. Conclusions/Significance: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs i

    Loss of Maternal CTCF Is Associated with Peri-Implantation Lethality of Ctcf Null Embryos

    Get PDF
    CTCF is a highly conserved, multifunctional zinc finger protein involved in critical aspects of gene regulation including transcription regulation, chromatin insulation, genomic imprinting, X-chromosome inactivation, and higher order chromatin organization. Such multifunctional properties of CTCF suggest an essential role in development. Indeed, a previous report on maternal depletion of CTCF suggested that CTCF is essential for pre-implantation development. To distinguish between the effects of maternal and zygotic expression of CTCF, we studied pre-implantation development in mice harboring a complete loss of function Ctcf knockout allele. Although we demonstrated that homozygous deletion of Ctcf is early embryonically lethal, in contrast to previous observations, we showed that the Ctcf nullizygous embryos developed up to the blastocyst stage (E3.5) followed by peri-implantation lethality (E4.5–E5.5). Moreover, one-cell stage Ctcf nullizygous embryos cultured ex vivo developed to the 16–32 cell stage with no obvious abnormalities. Using a single embryo assay that allowed both genotype and mRNA expression analyses of the same embryo, we demonstrated that pre-implantation development of the Ctcf nullizygous embryos was associated with the retention of the maternal wild type Ctcf mRNA. Loss of this stable maternal transcript was temporally associated with loss of CTCF protein expression, apoptosis of the developing embryo, and failure to further develop an inner cell mass and trophoectoderm ex vivo. This indicates that CTCF expression is critical to early embryogenesis and loss of its expression rapidly leads to apoptosis at a very early developmental stage. This is the first study documenting the presence of the stable maternal Ctcf transcript in the blastocyst stage embryos. Furthermore, in the presence of maternal CTCF, zygotic CTCF expression does not seem to be required for pre-implantation development
    corecore